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S1. Profile regression analysis 
 

The model (See also Molitor et al. 2010) 

 

Our approach consists of an assignment sub-model, which assigns individual profiles 

to clusters, and a disease sub-model, which links clusters of profiles to an outcome of 

interest via a regression model. Denote, for individual i, a covariate profile 

as,xi  (x1,,xP ) ; for instance, in the Gen-Air study we may have a subject with the 

following profile: living on a main road, exposed to more than 50mg/m
3
 of PM10, 

exposed to more than 40mg/m
3
 of NO2, low physical activity at work, etc.  As in 

Molitor et al. (2010), profiles are clustered into groups, in accordance with its 

covariate profile and disease status }1,0{iy , and an allocation variable, 

czi  indicates the thc  cluster to which individual, i, belongs. Mathematically, our 

basic mixture model assignment is,  
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mixture model (denoted as a Dirichlet process mixture, Dahl 2006) deals with a 

situation where the profile belongs to one of several different clusters, Cc ,...,1  each 

with membership probability c . The thc cluster is assigned a parameter *

c so that, 

given *

c and that czi  , the phenotype iy  is a Bernoulli variable with probability *

c . 

Denote with )(xp

c  the probability that risk factor px  takes the value x , when the 

individual belongs to cluster c . Given that czi  , we have that pix ,  has a multinomial 

distribution with cluster specific parameters p

c so that, ),1(Multinom~,

p
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c M  . Here, pM  denotes the number of categories of px . We 

assume that, a priori, )1,...,1(Dirichlet~p

c , which is a flat, non-informative prior. We 

adopt a flexible ‘stick-breaking’ prior (Ishwaran and James 2001) on the allocation 

weights ),...,( 1 C  , with a random parameter . This prior density allows for the 

number of clusters to be random. We place a non-informative uniform prior on in 

the  10,0  interval. Finally, we set that, a priori, )1,1(Beta~*

c , a usual conjugate 

choice of prior distribution for Bernoulli or binomial observations. Note that we use 
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the letter c to denote clusters, because we refer to the grouping of the observations 

during the estimation process, where the clustering can vary. Below, in the ‘Inference 

and output’ subsection, we refer to the best representative clustering of the 

observations and use the letter k, as in the main manuscript.    

 

Allowing for ordinal risk factors 

 

We extend the approach of (Molitor et al. 2010) and allow for ordinal covariates 

pix , by introducing ordered threshold parameters ))(),...,1(( p

p

c
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c M  , as in (Chib 

and Albert 1993). Now, 
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where pMk 1 , and )1,0(~ Nt p

c . Specifying the p

c parameter vector is equivalent 

to specifying the vector of ordered thresholds p

c . We assign a flat prior on p

c . 

Implementation of this approach within a Markov chain Monte Carlo sampling 

framework is not a trivial matter. It is required to sample efficiently from truncated 

normal distributions, and convergence can be slow, depending on the sample size. 

This is why we had to adopt the Metropolis-Hastings sampling framework suggested 

in Cowles (1996).  

 

Inference and output 

 

The parameters of the model are estimated using Markov chain Monte Carlo 

(MCMC) methods (Gilks et al. 1996). A Gibbs sampling approach is used. The cluster 

parameters are estimated and then the subjects are allocated to clusters conditionally 

on these parameters. To simplify the sampling procedure, the cluster model is 

approximated by setting a pre-defined maximum number of clusters C . For the Genair 

data set we have chosen a maximum number of 15 clusters. This was satisfactory 

since, throughout our analysis, the subjects typically clustered into less than five 

groups; see the results section in the main manuscript.  

 

Clustering procedures suffer from the so called `label-switching' problem (Richardson 

and Green 1997). In two different iterations, what is effectively the same cluster may 

have a different label, so that, what was labelled as, say, cluster one at iteration one, 

may be labelled as cluster three at iteration two. To observe how individuals typically 

cluster, in a manner invariant to ‘label-switching’, we construct, at every iteration, a 

score matrix so that element (i,j) is one if individuals i and j are in the same cluster, 

and zero otherwise. When the sampling is finished, an association matrix S is built as 

the average of all score matrices. So, element jiS ,  is an estimate of the probability that 

individuals (i,j) belong to the same cluster. This is indeed a quantity that is invariant 

to how each cluster is labelled. We summarise this matrix and obtain a representative 
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average partition bestz using the Partitioning Around Medoids (PAM, Kaufman and 

Rousseeuw 1994) approach. PAM is a robust deterministic clustering algorithm that 

provides an optimal partition, in the sense that it maximises a clustering score related 

to the distance of the observations from objects that represent the structure of the data.  

 

Model averaging approach 

 

Assume that bestz consists of K subgroups. A model averaging approach is adopted to 

evaluate the uncertainty associated with the characteristics of these groups. This 

involves running through the MCMC output, obtaining, at each iteration, an average 

value for the model parameters across all subjects in a certain group. For example, if 

the first subgroup of bestz contains subjects i={3,4,5}, then, from the sampled risk 

effects of the first iteration, we obtain ),,( ***

543 zzz  . A summary ),,( ***

1 543 zzzf    is 

then calculated, usually the mean or the median. This is repeated for all iterations of 

the MCMC sampler, generating a distribution of average parameter values associated 

with the risk of the first subgroup in bestz . Similar calculations are then performed for 

the rest of the sub-populations in bestz . In the same fashion, empirical distributions 

for )(xp

k , Kk ,,1 , are also obtained. The )(xp

k parameters and associated 

distributions describe the profile of the subjects in the K subgroups of bestz . If the 

algorithm generally puts individuals in the same cluster, these empirical distributions 

will tend to be relatively narrow. Conversely, if the algorithm usually puts individuals 

in disparate clusters, then the best clustering is less typical, and the empirical 

distributions will tend to be relatively wide. This approach provides the 

interpretability of single clustering approaches like K-means, yet exploits the rich 

output of the MCMC sampler to assess uncertainty for the parameters and 

corresponding to subgroups of the best clustering. For more details on the model 

averaging approach through post-processing see (Molitor et al. 2010), section 3.2 

 

S2. Checking model fit  
 

To compare the different approaches with respect to model fit, we always use the 

reduced data set with 545 subjects. We first use all 545 subjects to fit the model, and 

then predict the probability of disease pi for each of the subjects. Because the 

proportion of cases in our sample is very small (around 10%), rather than classifying 

the subjects as cases or controls, we use logistic regression type residuals as a 

measure of how well the model fits the data. The quantity we use for our comparisons 

is, 
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1)545(
i ii pyFIT  

 

 CART Profile 

regression 

MDR Logistic  

regression 

FIT 0.197 0.202 0.204 0.204 

 

The CART approach has the best performance. This is to be expected, since CART is 

able to generate extra nodes to accommodate specific subjects with distinct profiles 

and phenotypes.  The other methods have similar performance.  
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Supplemental Material, Table 1: Profile regression output when adjusting for the 

matching variables. 829 subjects analysed.  

Group 1 

84.01  , )0( 1 P =0.94, CI = (-0.17,1.93) 

N=96 (13 cases) 

 

Group 2 

22.02  , )0( 2 P =0.32, CI = (-1.17,0.58) 

N=121 (14 cases) 

 

Group 3 

61.03  , )0( 3 P =0.06, CI = (-1.42,0.15) 

 N=612 (56 cases) 
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Supplemental Material, Table 2: Profile regression output with reduced data set. 

545 subjects
1
 analysed with 115.0   

Group 1 

16.01  , )( 1  P =0.88, 6.1),( 31 OR , CI = (0.7,2.8), 89.0)1( ORP  

N=87 (13 cases) 

 
Group 2 

13.02  , )( 2  P =0.60, 27.1),( 32 OR , CI = (0.57,2.33), 69.0)1( ORP  

N=88 (10 cases) 

 
Group 3 

11.03  , )( 3  P =0.89 

 N=370 (40 cases) 

 
 
1
Due to missing PM10 observations, a reduced data set is analysed with methods other than profile 

regression. This reduced data set has 545 subjects (63 lung cancer cases and 482 controls) rather than 

829 subjects. When analysing this data set with profile regression, results are almost identical to the 

results presented in Table 2 in the main manuscript. The association of the subgroups with the risk for 

lung cancer is less pronounced than in the full data set, but in exactly the same direction. 
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Supplemental Material, Table 3: p-values when each risk factor is introduced 

separately in a simple logistic regression analysis with an intercept. 829 subjects 

analysed. We present the estimated odds ratio (peffect/(1-peffect))/(pref level(1-pref level)) for  

a specified reference level, and the associated 95% confidence interval. 

 p-value  

 

Reference  

level 

Effect 

parameter 

Estimated  

odds ratio 
Living on a main road 0.36 Not on main 

road 

On a main road 1.33 (0.72,2.45) 

Exposure to PM10 0.18 <30 μg/m
3
 30-40 1.10 (0.54,2.23) 

   >40-50 2.27 (0.87,5.90) 

   >50 g/m
3
  2.17 (0.84,5.64) 

Exposure to NO2 0.26 <30 μg/m
3
 30 – 40 1.23 (0.67,2.46) 

   >40 g/m
3
 1.67 (0.88,3.15) 

Physical activity at 

work 

0.09 Sedentary 

occupation 

Standing  

occupation 

0.46 (0.23,0.92) 

   Manual work 0.61 (0.29,1.27) 

   Heavy manual  

work 

1.15 (0.52,2.55) 

Physical activity at 

leisure 

0.14 Low Medium 

High 

1.11 (0.59,2.07) 

1.66 (0.94,2.95) 

Body mass index 0.45 Normal weight Overweight 0.98 (0.60,1.60) 

   Obese 0.64 (0.31,1.32) 

Deletion polymorphism 

in GSTM1 

0.67 Wild type Deletion 

polymorphism 

0.90 (0.57,1.43) 

Polymorphism in 

XRCC1 

0.91 Wild type Heterozygous or 

homozygous 

variant 

0.96 (0.48,1.93) 

Bulky DNA adducts 0.18 Not detectable Below median 1.99 (0.94,4.25) 

   Above median 1.55 (0.73,3.31) 

 



 8 

 

 
Supplemental Material, Figure 1: A visual 2-dimensional representation of the 

clustering presented in Table 2 in main manuscript. (30.51% of the distances 

variability is explained) This representation is constructed using the Partitioning 

Around Medoids (Kaufman and Rousseeuw 1994) clustering information and multi-

dimensional scaling (Cox and Cox 1994). 

 


